Txing

欢迎来到 | 伽蓝之堂

0%

Autonomous Driving | MTR-A: 1st Place Solution for 2022 Waymo Open Dataset Challenge - Motion Prediction

MTR-A: 1st Place Solution for 2022 Waymo Open Dataset Challenge - Motion Prediction

Abstract

  • 本文是MTR的变体,主要提出了一个使用motion query pair的transformer多模态轨迹预测框架,联合优化了意图位置和迭代运动微调;
  • 代码开源:https://github.com/sshaoshuai/MTR

1 Introduction

  • 预测算法:
    • goal-based strategy
    • direct predict a set of future trajectories

2 Method

2.1 Context Encoding with Transformer Encoders

  • 建模 agents 之间的交互,并编码 road environment

Input representation

  • 使用 polyline representations
  • agent 特征:
  • map 特征:
  • 是agent数量; 是map polylines 数量; 是特征维度;

Scene context encoding with transformer encoder

  • 以agent特征和map特征为输入
  • a set of self-attention modules are then adopted on A and M to model the interaction of agent and also encode the scene environment features for the following decoder network.

2.2 Multimodal Trajectory Prediction

  • 受到目标检测任务中的 concept of object query 启发
    • Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020. 2
  • 设计了 motion query pair 来建模运动预测,pair 包括两部分,static intention query 和 dynamic searching query

Motion query pair for motion prediction

  • 生成 个表征 intention point ,通过在GT轨迹终点上使用k-means算法获得这k个点

  • static intention query:

  • ​ 是 sinusoidal position encoding

  • trajectory-specific features for iterative motion refinement

  • dynamic searching query:对 (j+1)-th 层

  • 是第 j-th 层 decoder layer 预测轨迹的终点;是预测轨迹的帧数;

  • 同时收集预测轨迹附近的128个map ploylines作为道路特征

Attention with motion query pair

Motion prediction head with GMM

  • 是真值轨迹点

2.3 Model Ensemble

  • 为提高自举能力,提出了一个集成策略 model ensemble strategy

  • 使用 个训练好的模型,每个模型产生6个模态的轨迹,一共有 条轨迹;根据置信度最高的6个轨迹,通过对每个轨迹endpoint进行 non-maximum-suppression (NMS),距离阈值 随着轨迹长度L变化

  • 这一集成策略下的MTR模型被称为 MTR-A ,这也是本模型与MTR的主要区别

3 Experiments

3.1 Implementation Details