MP3: A Unified Model to Map, Perceive, Predict and Plan (Uber ATG, 2021)
- HD map具有的语义和几何信息使其成为自动驾驶系统的关键部件。但HD map的成本很高,难扩展,尤其是厘米级精度(centimeter-level accuracy)的情况下。因此能摆脱HD Map(地图加载失败、地图老旧等)的算法值得研究。本文提出了一种end2end的不依赖地图的自动驾驶算法——MP3。
- 输入为:
- raw sensor data
- high-level command (e.g., turn left at the intersection)
- 本文的定位为:mapless technology 的自动驾驶
1 Introduction
没有HD map的劣势:
感知不能再依赖“人行道上的行人”、“道路上的车辆”这样的先验信息;
进行规划的空间变大了
- 车辆需要把到达抽象成为路口直行(going straight at an intersection)、左转(turning left)和右转(turning right)等高阶的行为指令。
- 大多数的无地图方法模仿专家的驾驶行为(朝向角、加速度),但是没有提供可解释的中间表征(intermediate
interpretable representations),而这可以帮助解释车辆的决策行为
- End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.
- End-to-end driving via conditional imitation learning. In ICRA, 2018.
- Urban driving with conditional imitation learning. arXiv preprint arXiv:1912.00177, 2019.
- Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d. In Proceedings of the European Conference on Computer Vision, 2020.
- 这些方法没有结构信息和先验知识,容易受到分布漂移(distributional
shift)的影响
- A reduction of imitation learning and structured prediction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages 627–635, 2011.
- 一些使用在线地图的方法(获得道路边界、中心线),要么过度简单(假设了车道是平行的,但这只在高速场景适用),要么难以将静态环境的不确定性纳入运动规划,而运动规划对于降低风险至关重要。[2,
16, 18, 21, 37],
- Deep multi-sensor lane detection. In IROS, pages 3102–3109. IEEE, 2018.
- 3d-lanenet: End-to-end 3d multiple lane detection. In Proceedings of the IEEE International Conference on Computer Vision, pages 2921–2930, 2019.
- Gen-lanenet: A generalized and scalable approach for 3d lane detection. arXiv, pages arXiv–2003, 2020.
- Hierarchical recurrent attention networks for structured online maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3417–3426, 2018.
2 Related Work
2.1 Online Mapping:
- 特点:
- satellite imagery (卫星图像)
- gather dense information (采集车多次经过同一地方)
- human-in-the-loop
- predicting map elements online:
- 3d-lanenet: End-to-end 3d multiple lane detection. In Proceedings of the IEEE International Conference on Computer Vision, pages 2921–2930, 2019.
- Gen-lanenet: A generalized and scalable approach for 3d lane detection. arXiv, pages arXiv–2003, 2020.
2.2 Perception and Prediction
- 生成轨迹集合 generate a fixed set of trajectories [6, 8–10, 26, 28, 30, 36, 56]
- 画出样本特征分布 draw samples to characterize the
distribution
- Implicit latent variable model for scene-consistent motion forecasting. arXiv preprint arXiv:2007.12036, 2020.
- R2p2: A reparameterized pushforward policy for diverse, precise generative path forecasting. In ECCV, 2018.
- Multiple futures prediction. In Advances in Neural Information Processing Systems, pages 15398–15408, 2019.
- 预测时间占用图 predict temporal occupancy maps
- Discrete residual flow for probabilistic pedestrian behavior prediction. arXiv preprint arXiv:1910.08041, 2019.
- The garden of forking paths: Towards multi-future trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10508–10518, 2020.
- Scene compliant trajectory forecast with agent-centric spatio-temporal grids. IEEE RA-L, 5(2):2816–2823, 2020.
- 这些方法由于涉及了非最大抑制(non-maximum suppression)和可信度阈值(confidence thresholding),可能出现不安全的情况
- occupancy grids:
- Motionnet: Joint perception and motion prediction for autonomous driving based on bird’s eye view maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11385–11395, 2020.
- Learning occupancy grid maps with forward sensor models. Autonomous robots, 15(2):111–127, 2003.
- Perceive, predict, and plan: Safe motion planning through interpretable semantic representations. In Proceedings of the European Conference on Computer Vision (ECCV), 2020.
2.3 Motion Planning
- 从感知直接输出控制信号 (Driving policy transfer via modularity and abstraction. arXiv preprint arXiv:1804.09364, 2018.)会面临稳定性和鲁棒性的问题(stability and robustness issues)(Exploring the limitations of behavior cloning for autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision, pages 9329–9338, 2019.)
3 Interpretable Mapless Driving
3.1 Extracting Geometric and Semantic Features
- The result is a 3D tensor of size
,which is the input to our backbone network. - This network combines ideas from [9, 53] to extract geometric, semantic and motion information about the scene.
3.2 Interpretable Scene Representations
- 道路先验信息和一些可解释的知识,使用
online map
表示 - 动态目标的位置、速度信息,使用
dynamic occupancy field
表示(the dynamic objects position and velocity into the future, captured in our dynamic occupancy field)
- 具体而言,两种表征信息包括:
Online map representation:
- Drivable area:以道路边缘为界的可行驶区域;
- Reachable lanes:可用车道是SDV在不违反任何交通规则的情况下可以到达的运动路径的子集。规划轨迹时,我们希望SDV靠近这些可到达的车道,并按照它们的方向行驶。因此,对于地平面中的每个像素,我们预测到最近的可到达车道中心线的无符号距离,在10米处截断,以及最近的可到达车道中心线分段的角度。
- Intersection:被交通信号等或者交通标志控制的路段,需要根据信号灯或者标志按交通规定行驶;
Dynamic occupancy field:
现有的行为预测算法包括不安全的离散决策unsafe discrete decisions such as confidence thresholding and non-maximum suppression (NMS)
- Initial Occupancy:一个BEV网格单元
- Temporal Motion Field:a 2D BEV velocity vector (in m/s).
Note
:车辆、行人和自行车被视为单独的类别,每个类别都有自己的占用流。
Probabilistic Model:
online Map 分为以下几个通道:
可到达区域
路口
到最近车道线的距离。the direction of the closest lane centerline in the reachable lanes
as a Von Mises distribution since it has support between . 可到达车道中线的截断距离变换为拉普拉斯算子。We model the truncated distance transform to the reachable lanes centerline
as a Laplacian, which we empirically found to yield more accurate results than a Gaussian
建模动态物体的occupancy
the probability of future occupancy under our probabilistic model, we
first define the probability of occupancy flowing from location
3.3 Motion Planning
设计了一个基于采样的轨迹规划器,其根据运动学灵活的生成多种轨迹,然后使用一个learned scoring function选择轨迹。
3.3.1 Trajectory Sampling
Search-based optimal motion planning for automated driving. In IROS, 2018
- 根据
在专家轨迹数据集中检索专家轨迹, 表示当前自车状态,检索出的轨迹有不同的初始速度和朝向。因此使用加速度和转向角来描述轨迹 ,输入到a bicycle model [38]生成具有连续速度和转向角的轨迹。 - [38]. The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles? In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 812–818. IEEE, 2017.
- 文献[37]提供了一个忽略自车初始状态的简化的轨迹生成模型。
- [37]. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d. In Proceedings of the European Conference on Computer Vision, 2020.
3.3.2 Route Prediction
- 由于无地图驾驶没有车道线follow,本文假设遵循command来行驶,指令
, where is a discrete high-level action, and an approximate longitudinal distance to the action(行为的纵向距离)(d经过”rasterize”处理),输入给CoordConv[29] - An intriguing failing of convolutional neural networks and the coordconv solution. In Advances in Neural Information Processing Systems, pages 9605–9616, 2018.
3.3.2 Trajectory Scoring
- Routing and Driving on Roads: 该评分函数鼓励车辆行驶在概率图R中概率高的区域
其中
离开车道损失:
Safety
Comfort
惩罚jerk和加速度
3.4. Learning
两阶段的训练。我们分两个阶段优化我们的驾驶模型。我们首先训练online map、dynamic occupancy field和routing。一旦这些被收敛,在第二阶段,我们保持这些部分冻结,并为得分函数的线性组合训练规划器权重。我们发现这种两阶段的培训比端到端的培训更稳定。(We optimize our driving model in two stages. We first train the online map, dynamic occupancy field, and routing. Once these are converged, in a second stage, we keep these parts frozen and train the planner weights for the linear combination of scoring functions. We found this 2-stage training empirically more stable than training end-to-end.)
4. Experimental Evaluation
- Imitation Learning (IL), where the future positions of the SDV are predicted directly from the scene context features, and is trained using L2 loss.
- Conditional Imitation Learning (CIL) [11], which is similar to IL
but the trajectory is conditioned on the driving command.
- End-to-end driving via conditional imitation learning. In ICRA, 2018.
- Neural Motion Planner (NMP) [55], where a planning cost-volume as
well as detection and prediction are predicted in a multi-task fashion
from the scene context features, and Trajectory Classification (TC)
[37], where a cost-volume is predicted similar to NMP, but the
trajectory cost is used to create a probability distribution over the
trajectories and is trained by optimizing for the likelihood of the
expert trajectory.
- Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d. In Proceedings of the European Conference on Computer Vision, 2020.
- End-to-end interpretable neural motion planner. In CVPR, 2019.
- Finally, we extend NMP to consider the high-level command by learning a separate costing network for each discrete action (CNMP).
后面还有大量实验情景的展示图。
总结
比较有想法的一个工作,做得比较细致,但是介绍相对粗略,可以仔细研究。