Txing

欢迎来到 | 伽蓝之堂

0%

Q100-相同的树-简单-二叉树

100. 相同的树

Question

给你两棵二叉树的根节点 pq ,编写一个函数来检验这两棵树是否相同。

如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。

Example 1:

输入:p = [1,2,3], q = [1,2,3] 输出:true

Example 2:

输入:p = [1,2], q = [1,null,2] 输出:false

Note:

  • 两棵树上的节点数目都在范围 [0, 100] 内

Approach 1: 深度优先搜索

如果两个二叉树都为空,则两个二叉树相同。如果两个二叉树中有且只有一个为空,则两个二叉树一定不相同。

如果两个二叉树都不为空,那么首先判断它们的根节点的值是否相同,若不相同则两个二叉树一定不同,若相同,再分别判断两个二叉树的左子树是否相同以及右子树是否相同。这是一个递归的过程,因此可以使用深度优先搜索,递归地判断两个二叉树是否相同。

1
2
3
4
5
6
7
8
9
10
class Solution:
def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:
if not p and not q:
return True
elif not p or not q:
return False
elif p.val != q.val:
return False
else:
return self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right)

复杂度分析

  • 时间复杂度:,其中 m 和 n 分别是两个二叉树的节点数。对两个二叉树同时进行深度优先搜索,只有当两个二叉树中的对应节点都不为空时才会访问到该节点,因此被访问到的节点数不会超过较小的二叉树的节点数。
  • 空间复杂度:,其中 m 和 n 分别是两个二叉树的节点数。空间复杂度取决于递归调用的层数,递归调用的层数不会超过较小的二叉树的最大高度,最坏情况下,二叉树的高度等于节点数。

Approach 2: 广度优先搜索

也可以通过广度优先搜索判断两个二叉树是否相同。同样首先判断两个二叉树是否为空,如果两个二叉树都不为空,则从两个二叉树的根节点开始广度优先搜索。

使用两个队列分别存储两个二叉树的节点。初始时将两个二叉树的根节点分别加入两个队列。每次从两个队列各取出一个节点,进行如下比较操作。

  • 比较两个节点的值,如果两个节点的值不相同则两个二叉树一定不同;

  • 如果两个节点的值相同,则判断两个节点的子节点是否为空,如果只有一个节点的左子节点为空,或者只有一个节点的右子节点为空,则两个二叉树的结构不同,因此两个二叉树一定不同;

  • 如果两个节点的子节点的结构相同,则将两个节点的非空子节点分别加入两个队列,子节点加入队列时需要注意顺序,如果左右子节点都不为空,则先加入左子节点,后加入右子节点。

如果搜索结束时两个队列同时为空,则两个二叉树相同。如果只有一个队列为空,则两个二叉树的结构不同,因此两个二叉树不同。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution:
def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:
if not p and not q:
return True
if not p or not q:
return False

queue1 = collections.deque([p])
queue2 = collections.deque([q])

while queue1 and queue2:
node1 = queue1.popleft()
node2 = queue2.popleft()
if node1.val != node2.val:
return False
left1, right1 = node1.left, node1.right
left2, right2 = node2.left, node2.right
if (not left1) ^ (not left2):
return False
if (not right1) ^ (not right2):
return False
if left1:
queue1.append(left1)
if right1:
queue1.append(right1)
if left2:
queue2.append(left2)
if right2:
queue2.append(right2)

return not queue1 and not queue2

复杂度分析

  • 时间复杂度:,其中 m 和 n 分别是两个二叉树的节点数。对两个二叉树同时进行广度优先搜索,只有当两个二叉树中的对应节点都不为空时才会访问到该节点,因此被访问到的节点数不会超过较小的二叉树的节点数。
  • 空间复杂度:,其中 m 和 n 分别是两个二叉树的节点数。空间复杂度取决于队列中的元素个数,队列中的元素个数不会超过较小的二叉树的节点数。