Txing

欢迎来到 | 伽蓝之堂

0%

Q200-岛屿数量-中等-深度and广度优先搜索

200. 岛屿数量

Question

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

Example 1:

输入:grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"]] 输出:1

Example 2:

输入:grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"]] 输出:3

Note:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 300
  • grid[i][j] 的值为 '0''1'

Approach 1: 深度优先搜索

我们可以将二维网格看成一个无向图,竖直或水平相邻的 11 之间有边相连。

为了求出岛屿的数量,我们可以扫描整个二维网格。如果一个位置为 11,则以其为起始节点开始进行深度优先搜索。在深度优先搜索的过程中,每个搜索到的 11 都会被重新标记为 00。

最终岛屿的数量就是我们进行深度优先搜索的次数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution:
def dfs(self, grid, r, c):
grid[r][c] = 0
nr, nc = len(grid), len(grid[0])
for x, y in [(r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)]:
if 0 <= x < nr and 0 <= y < nc and grid[x][y] == "1":
self.dfs(grid, x, y)

def numIslands(self, grid: List[List[str]]) -> int:
nr = len(grid)
if nr == 0:
return 0
nc = len(grid[0])

num_islands = 0
for r in range(nr):
for c in range(nc):
if grid[r][c] == "1":
num_islands += 1
self.dfs(grid, r, c)

return num_islands

复杂度分析

  • 时间复杂度:O(MN),其中 M 和 N 分别为行数和列数。

  • 空间复杂度:O(MN),在最坏情况下,整个网格均为陆地,深度优先搜索的深度达到 MN。

Approach 2: 广度优先搜索

同样地,我们也可以使用广度优先搜索代替深度优先搜索。

为了求出岛屿的数量,我们可以扫描整个二维网格。如果一个位置为 1,则将其加入队列,开始进行广度优先搜索。在广度优先搜索的过程中,每个搜索到的 1 都会被重新标记为 0。直到队列为空,搜索结束。

最终岛屿的数量就是我们进行广度优先搜索的次数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
nr = len(grid)
if nr == 0:
return 0
nc = len(grid[0])

num_islands = 0
for r in range(nr):
for c in range(nc):
if grid[r][c] == "1":
num_islands += 1
grid[r][c] = "0"
neighbors = collections.deque([(r, c)])
while neighbors:
row, col = neighbors.popleft()
for x, y in [(row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1)]:
if 0 <= x < nr and 0 <= y < nc and grid[x][y] == "1":
neighbors.append((x, y))
grid[x][y] = "0"

return num_islands

复杂度分析

  • 时间复杂度:,其中 M 和 N 分别为行数和列数。
  • 空间复杂度:,在最坏情况下,整个网格均为陆地,队列的大小可以达到