Txing

欢迎来到 | 伽蓝之堂

0%

Neuroscience | Emergence of abstract rules in the primate brain (Nature)

Emergence of abstract rules in the primate brain

论文链接:https://www.nature.com/articles/s41583-020-0364-5

背景

抽象能力帮助学习规则,提升认知和决策能力,帮助避免潜在的环境危险,丰富人的社会行为和互动。

人是如何抽象事物,把经验变成有意义的概念的?本文探索这背后的神经机制。进而揭示前额叶皮质对抽象规则的形成(formation)、维护(maintenance)以及修正(revision)上的作用。

  • 好处:通过抽象规则,帮助形成adaptive behaviour

  • 规则的出现是动态多阶段的过程(dynamic multistage processes ),包括rule formation, maintenance and revision

  • prefrontal cortex (PFC) is heavily involved in the representation and implementation of abstract rules。但只有前额叶皮层的部分区域对学习和实施抽象规则是必要的

结论:我们最终提出了一个统一的框架,将抽象规则的形成和执行与认知控制的神经架构联系起来

key words: rule-guided behaviour

主要工作

1 Rules: definition and classification

  • 具体规则(concrete rules)描绘了对象、事件与行为之间的简单的时空关系。刺激-响应或者刺激-输出关系。

    具体的规则是依赖于经验的,通过大量的积极/消极的尝试逐渐强化形成(The formation of concrete rules is experience-dependent)

  • 抽象规则(abstract rules)更加复杂和多样。一个特点是他们可以容易地生成新的示例。可能会要求选择性注意力。可以用在不熟悉的环境中的新刺激上。

    抽象规则描绘物体、事件和响应的交互和因果关系。用一刺激,目标不同,得到不同的响应。

  • Selective attention: Neural mechanisms involved in focusing cognitive resources on task-relevant sensoryperceptual processes and inhibiting goal-irrelevant stimuli to facilitate achieving goals.

2 Concrete and multifaceted categories

  • 对环境刺激分类的能力是天生的或者是依赖经验学习到的experience-dependent learning
  • Multifaceted categories不取决于单个例子和传感特征,而是使用集成的刺激特征(形状、颜色、声音)。与抽象规则类似,能用于处理新的情况,指导复杂的目标导向的行为

3 Abstract rules in primates

4 Evidence from neuronal recordings

4.1 Matching and non-matching rules
  • Delayed matching to sample (DMS): 延时匹配规则,给出example和cue,延时一段时间后,选根据cue选择test picture,要选择更example一致的为正确。

  • Delayed non-matching to sample (DNMS): 延时不匹配规则,给出example和cue,延时一段时间后,选根据cue选择test picture,要选择更example不一致的为正确。

  • 对猕猴的研究发现抽象规则在DLPFC (dorsolateral prefrontal cortex) and VLPFC (ventrolateral prefrontal cortex)被编码,对人的研究发现只在VLPFC

4.2 Number rules
  • 让猴子忽略物体的外表,只注意数量的关系

  • 顶叶皮层的顶内沟编码数字信息 intraparietal sulcus (IPS) of the parietal cortex encode numerical information

4.3 Flexible shifting between rules
  • 规则上的迁移和变换,以及自己探索未知的规则
4.4 Abstract response strategies
  • abstract response strategies
  • working memory task(Sakai, K. & Passingham, R. E. Prefrontal interactions reflect future task operations. Nat. Neurosci. 6, 75–81 (2003). )
4.5 Interactions of rules and categories
4.6Insight from neuronal recordings
  • rule-based action selection
4.7 Evidence from interventional studies
4.8 Stages of abstract rule development

  • Rule formation

    • 纹状体调制:

      • Bunge, S. A. & Wallis, J. D. Neuroscience of RuleGuided Behavior (Oxford Univ. Press, 2008).
      • Nieder, A. & Dehaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 32, 185–208 (2009).
      • Sleezer, B. J., Castagno, M. D. & Hayden, B. Y. Rule encoding in orbitofrontal cortex and striatum guides selection. J. Neurosci. 36, 11223–11237 (2016).
      • Sleezer, B. J. & Hayden, B. Y. Differential contributions of ventral and dorsal striatum to early and late phases of cognitive set reconfiguration. J. Cogn. Neurosci. 28, 1849–1864 (2016).
      • Cools, R., Clark, L. & Robbins, T. W. Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. J. Neurosci. 24, 1129–1135 (2004).
    • 海马调制:

      • Zeithamova, D. et al. Brain mechanisms of concept learning. J. Neurosci. 39, 8259–8266 (2019).

      • Bowman, C. R. & Zeithamova, D. Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization. J. Neurosci. 38, 2605–2614 (2018).

      • Murray, E. A. & Wise, S. P. Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav. Neurosci. 110, 1261–1270 (1996).

      • Orbach, J., Milner, B. & Rasmussen, T. Learning and retention in monkeys after amygdala–hippocampus resection. Arch. Neurol. 3, 230–251 (1960).

      • Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J. & Robbins, T. W. Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 29, 993–1006 (1991).

    • 抽象规则的学习是依赖于海马和底层皮质。一旦学会动作,基于规则的任务随后的表现成为独立的内侧颞叶。PFC区域和纹状体之间的连接被认为形成了几个互补的并行网络,从而促进了通过反复试验学习规则所需的相互信息交换。

    • 慢的和目标导向的学习是在大FPC完成的,而快的和强化导向的学习发生在纹状体 (Seger, C. A. & Miller, E. K. Category learning in the brain. Annu. Rev. Neurosci. 33, 203–219 (2010) )

  • Rule storage and retrieval

  • Rule-guided behaviour

总结

这是一篇综述文章,介绍的工作比较偏神经科学的研究。本文介绍了与抽象规则相关的背景、定义、神经基础,主要在PFC附近,这部分不熟悉,以后可以继续调研看看。

有几个关键词可以再去检索一下,看看有没有合适的文章。